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Objectives

• Develop a user friendly spreadsheet based tool to
l l t th h t t f ffi i t d flcalculate the heat transfer coefficients and flame

temperature during preheating of the nozzle.

D l f i dl d h t b d t l t• Develop a user friendly spreadsheet based tool to
model the heat transfer in submerged entry nozzles
during the three stages: preheat cool down andduring the three stages: preheat, cool down and
casting.
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Model & computational domain
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Models Developed

• Flame Temperature Calculation Model

• Heat Transfer Coefficients Calculation Model

• Model for heat transfer in the refractoryModel for heat transfer in the refractory 
during the three stages: 
– preheatpreheat, 

– cool down 

casting– casting
• Ambient slice

• Submerged sliceSubmerged slice. 
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Flame Temperature 
Calculation Model – Input PageCalculation Model Input Page
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Calculation of Flame temperature and heat 
transfer coefficients

• User can select from the following gases as fuel: Methane, hydrogen,
propane, natural gas, blast furnace gas and acetylene.propane, natural gas, blast furnace gas and acetylene.
•The species considered are: CO2, O2, O, CO, H2O, N2, NO, OH, H, H2

• For natural gas and blast furnace gas, user can specify the percentage
of various constituents (natural gas: mathane – 94%, ethane – 3%,
propane – 1%, butane – 0%, CO2 – 1%, O2 – 0%, N2 – 1%)
•Reactants temperature and pressure need to be entered.
•The reaction is a constant pressure process.
•The user can choose between excess air and oxygen enrichment.
•The amount of excess air or air enrichment needs to be specified.
•The flame temperature calculated for the above composition of natural
gas with 50% excess air was found to be 1510 °Cgas with 50% excess air was found to be 1510 °C.
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Heat Transfer Coefficients 
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Heat Transfer Coefficients

• Free Convection to ambient:
– The Churchill and Chu [1] equation for flow over a vertical flat plate is usedThe Churchill and Chu [1] equation for flow over a vertical flat plate is used
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• Forced Convection from flame:
The Petukhov, Kirillov, and Popov [1] is used
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Th f d h t t f ffi i t l l t d t b 72 5 W/ 2K• The forced heat transfer coefficient was calculated to be 72.5 W/m2K. 
• The free heat transfer coefficient was calculated to be 7.6 W/m2K 

• Sleicher and Rouse equation was used to calculate the forced 
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q
convection heat transfer coefficient from molten steel flowing on 
the inside of the nozzle.



Properties of mixture of gases in 
combustion productsp

n
i iy λλ 

• Thermal conductivity of the mixture of gases is calculated using Saxena and  
Mason [3]:
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Where are  the viscosities of pure i and j respectively

And                     are the molecular weights of pure i and j
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i j

• Thermal diffusivity, kinematic viscosity, density and specific heat are 
calculated using the particle mixture rule.

Heat Transfer Model for the 
refractory – Main Pagerefractory Main Page
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Heat Transfer Model for the 
refractory – Featuresrefractory Features

• User can enter the number of layers he 
wants in the model.

• Each layer can have different thickness and y
different number of nodes.

• The user can choose at what times theThe user can choose at what times the 
results have to be plotted.

• User can select the nodes where the results• User can select the nodes where the results 
are to plotted.
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Heat transfer model – assign 
refractory propertiesrefractory properties

• The table gets populated based on the number of layers 
entered by the modelentered by the model.

• User can select which material should be assigned to each 
layer by choosing from the drop down menu (which get 
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automatically populated to show all the materials in the 
excel file)



Governing Equation and finite difference 
equation for interior nodesq

I f
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• Heat conduction equation in cylindrical co–ordinates [1]
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• Using Taylor series [1] expansion the equation is discretized
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Finite Difference Equations (Side nodes with 
convection))
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Finite Difference Equations (Interface 
Nodes))
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Steel Shell Solidification Model

• Enthalpy formulation of the transient 1-D heat conduction 
equation is solved:equation is solved:
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where Lf is the latent heat of fusion.
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Steel Shell Solidification Model

 

• Enthalpy of interior nodes:
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using [2] :
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Validation of Steady State Aspect of the 
Model

• Compared the results of the simulation when it reaches steady state with 
analytical Solution.

Governing equation for Analytical solution [1]:• Governing equation for Analytical solution [1]:
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Simulation conditions for validation of steady state 
aspect of the model

Label Symbol Value Units

Outer Radius of Refractory ro 67.5 mm

Bulk Refractory Wall Thickness t
29.5 mm

Initial Nozzle Temperature
Tintital 27* °C

Ambient Temperature 
T 27 °CTambient 27 C

Flame Temperature Tflame 1460 °C
Internal Convection heat transfer 

Coefficient (Forced) hflame 50 W/(m2K)

External Convection heat 
transfer Coefficient (Free)

hambient 7.3 W/(m2K)

Thermal Conductivity
K 18.21 W/m-K

Specific Heat Cp 804* J/kg-Kp p g

Density ρ 2347 kg/m3

Stefan Boltzman's Constant
σ 5.67E-8

Emmissivity ε 0.96
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* Parameters required by transient simulation method

Validation – Steady state aspect of the 
model

• The results of the simulation are in good agreement with that of the analytical 
solution

Single Layer, No radiation Single Layer, with radiationg y , g y ,

Four Layers, No radiation Four Layers, with radiation
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Validation of transient aspect of the model

• Compare the results of the simulation with that of the lumped thermal heat 
capacity model.

• System undergoing a transient thermal response to a heat transfer process 
has a nearly uniform temperature and small differences of temperature within 
the system can be ignored.

Th d l i lid l if th Bi t b (hL/k) 0 1• The model is valid only if the Biot number (hL/k) < 0.1

• The governing equation is [1]

( )p e
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dt
ρ = − −p edt

• To solve this equation, one initial condition is required:

t=0: T=To.

Solving the equation, the temperature at any time,t can be calculated from:Solving the equation, the temperature at any time,t can be calculated from:
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where To is the initial surface temperature, Te is the ambient temperature. 

Simulation Parameters – Validation of 
transient aspect of the modelp

Label Symbol Value Units

Outer Radius of Refractory ro 67.5 mmOuter Radius of Refractory ro 67.5 mm

Bulk Refractory Wall Thickness t
29.5 mm

Initial Nozzle Temperature
Tintital 1100 °C

Ambient Temperature 
Tambient 27 °C

External Convection heat transfer 
Coefficient (Free) hambient 7.3 W/(m2K)
Coefficient (Free) ambient

Thermal Conductivity
K 1000 W/m-K

Specific Heat Cp 804 J/kg-K

Density ρ 2347 kg/m3

Stefan Boltzman's Constant
σ 5.67E-8

Emmissivity ε 0.96Emmissivity ε 0.96
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Comparison of Results of lumped model and 
transient simulation

• The results of the simulation are in good agreement with that of the 
lumped thermal heat capacity model
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Output page of the tool
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Comparison with measurements (inside 
heat transfer coefficient = 72 W/m2-K))
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Comparison with measurements (inside heat 
transfer coefficient = 18 W/m2-K, emissivity = 0.5)
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Parametric Study

Parameters Highest Temperature Difference in temp. 
between inner and outer 

surface

Forced Convection = 72 
W/m2-K, emissivity = 0.5

920 °C 90 °C

Forced Convection = 18 
W/m2-K, emissivity = 0.5

585 °C 30 °C

Thermal Conductivity is 954 °C 150 °C
halved

Emissivity increased to 
0.9

850 °C 100 °C

Specific Heat is doubled 954 °C 100 °C
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Conclusions

• The temperature in the inner surface of the nozzle reached 
900 °C after a preheat time of 2 hours If the inside heat900 C after a preheat time of 2 hours. If the inside heat 
transfer coefficient is reduced to 18 W/m2-K the temperature 
in the inner surface of the nozzle is 585 °C. Results from 

i l i l ti t h th f i t f thinumerical simulation match those of experiments for this 
case.

• The tool can be used to predict the temperatures in theThe tool can be used to predict the temperatures in the 
nozzle during different stages of preheat, cool down and 
casting. 

Th l b d l l h fl d• The tool can be used to calculate the flame temperature and 
heat transfer coefficients for different fuels and varying 
composition.
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p

• Air entrainment should be decreased, because excess air 
reduces the flame temperature. 
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