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submerged entry nozzles during
preheating, cool down and casting

Varun Kumar Singh, B.G. Thomas

1

Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign

N Objectives

- aating

* Develop a user friendly spreadsheet based tool to
calculate the heat transfer coefficients and flame
temperature during preheating of the nozzle.

* Develop a user friendly spreadsheet based tool to
model the heat transfer in submerged entry nozzles
during the three stages: preheat, cool down and
casting.
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Model & computational domain
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* Flame Temperature Calculation Model
 Heat Transfer Coefficients Calculation Model

* Model for heat transfer in the refractory
during the three stages:
— preheat,
— cool down

— casting
» Ambient slice
» Submerged slice.
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q Flame Temperature

=, .Calculation Model — Input Page

Set GASER executable file path: 7 Erouse.. [ c:Program Files\GASEGMGaseq.exe |
| Select Fuel: || Hatural | Gar |l|
Constituents of Matural Gas Compasition (2]
Methane [CHq) )
Ethane [C:Hz] 3
Propane [CaHi) 1
Butane (L) [}
Tarbon Dioside [L0z] 1
Trygen [0 1
Mitrogen (s 1
Total 000 Dine Editing..
Select ouygen entry method: | Exzers Air |L| I
Excess aif relalive o stoichiometric [34) 50 bl
[ Fieactants | Products |
[ Temperature [T I 27 | T510.1 bl
| Pressure [atm] | 1 h 1 |
Species FReactants [34] Fieactants [moles) Products [moles) Products (3]
Methane [CHy) E1 9.40E-M 0.00E-00 oo
Ethane [C:H:] 0z 2.00E-02 0.00E-00 oo
Propane [CsHa) 01 100E-02 0.00E+00 00
Butans [CiHa) oa 0.00E-00 0.00E-00 oo
Carbon dicside (CO0:] 01 1.00E-02 1.04E-00 EY
Diygen [0 197 3.05E+00 9.95E-M B4
Mitrogen (M) 40 115E+01 115E+01 T
Carbon monowide (CO) oo 0.00E-00 6.97E-04 oo
w'ater [H.0] oa 0.00E-00 2.0E-00 123
Dygen atom (O] | O0E+! 04E-04
Mitric Ozide [MO] . .O0E! 49E-02
Huydrotide [OH] I LO0E L HE-03
Hydrogen atom (H] T 00E~  3E-05
Huydrogen [H:) 0.0 0.00E-00 3.61E-04 00
Caloulate Fieset Help
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0 Calculation of Flame temperature and heat
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Csus transfer coefficients
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« User can select from the following gases as fuel: Methane, hydrogen,
propane, natural gas, blast furnace gas and acetylene.

*The species considered are: CO, O,, O, CO, H,0, N,, NO, OH, H, H,
 For natural gas and blast furnace gas, user can specify the percentage
of various constituents (natural gas: mathane — 94%, ethane — 3%,
propane — 1%, butane — 0%, CO, — 1%, O,— 0%, N, — 1%)

*Reactants temperature and pressure need to be entered.

*The reaction is a constant pressure process.

*The user can choose between excess air and oxygen enrichment.

*The amount of excess air or air enrichment needs to be specified.

*The flame temperature calculated for the above composition of natural
gas with 50% excess air was found to be 1510 °C.
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Heat Transfer Coefficients

Forced Convection (flame on the inside) and
Free Convection (ambient on the outside)

Flame Temperature 1510.1 °C
Outside Surface Temperature 828.7 {E
Nozzle Orifice Area 4.42E-01 inch?
Characteristic diameter 0.0732 m
Gas Pressure 9 PSI
Friction Factor 0.03 m/m
Gas Pressure 6.21E+04 Pa
Nozzle Orifice Area 2.85E-04 m*
Gas Density 1.45E-01 kg/m*
Velocity 9.24E+02 m/s
Mass flow Rate 3.83E-02 kals
Free Convection 7.64 WimK
Forced Convection 7245 Wim*K

Calculate

Forced Convection (molten steel flowing on
inside of the nozzle)

Casting Speed 4 ton/minute
Density of Steel 7015 kg/m*
Thermal Conductivity of Steel KX] Wi(m-k)
Dynamic Viscosity of Steel 0.0055 Ns/m?
Thermal Diffusivity 6.10E-06 méls
Casting Speed 2.26 m'ls
Reynolds Number 2. 11E+05
Prandt| Number 1.29E-01
b 7.96E-01
a 8.22E-01
Nusselt Mumber TA5E+01
Heat Transfer Coefficient 33594.11 Wim?K

Sleicher and Rouse Equation

2ur v
Re= — Pr=—
v a
b ! 05E 06+P 0.88 0.24
= 3105 Exp(-06+Pr) a= ey
Nu = 5+ 0.015 Re®Pr? po Nuwk
r
University of Illinois at Urbana-Champaign Metals Processing Simulation Lab . Varun Kumar Singh

\o\

R

L
c?'-lqus

S asting

“=ensortium

Heat Transfer Coefficients

Free Convection to ambient:

— The Churchill and Chu [1] equation for flow over a vertical flat plate is used

Nu

avg

=40.825+

2

[0.387Ra'"]

{ (0429)"”‘}
14| 2227
Pr

8/27

Forced Convection from flame:

The Petukhov, Kirillov, and Popov [1] is used

[(f /8)Reg Pr]

[1.07+12.7( /8)* (Pr**~1) |

« The forced heat transfer coefficient was calculated to be 72.5 W/m2K.
* The free heat transfer coefficient was calculated to be 7.6 W/m2K

» Sleicher and Rouse equation was used to calculate the forced
convection heat transfer coefficient from molten steel flowing on
the inside of the nozzle.
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Properties of mixture of gases in
NS combustion products
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» Thermal conductivity of the mixture of gases is calculated using Saxena and
Mason [3]: A = Z”: ny#
Y YA
j=1

Where A, = the thermal conductivity of the gas mixture

A’i = the thermal conductivity of pure i

Yi» ¥ j=mole fractions of component i and j

R G I N0 6 A D R
i [8 (1L + M /M )]
_ani
mm

J

Where 1, n jare the viscosities of pure i and j respectively
And M s M j are the molecular weights of pure i and j

» Thermal diffusivity, kinematic viscosity, density and specific heat are
calculated using the particle mixture rule.

University of Illinois at Urbana-Champaign . Metals Processing Simulation Lab . Varun Kumar Singh 9
"u.;. — -
refractory — Main Page
"'-‘-::‘.\Prlsgrtlunl
Outer Radius of Refractory 8 mm
EmerENum.ber. U.f HES Assign Refractary
mmissivity 0.5 -
Properties
Ambient Temperature 24.0 °C
Initial Nozzle Temperature 9.0 °C
FlameTemperature 1510.0 45
Intemnal _heat transfer Coefficient (forced) 125 Wi(m?K) )
External heat transfer Coefficient (free) 7.64 Wi{m?K) Preheat Simulation
Preheat Time 120.0 min.
Time Step 0.01 5 View Preheat Plots
Time interval between printing 0.5 min.
Times to plot from start of preheat (min.) 7 1 3 10 [ 30 [ 120 |
Points to plot temperature. Distance from outer surface (mm) 0 10.76 32.16 [ 40.7 [ 41.4 |
Ambient Temperature (Outsida) 24.0 q8
Ambient Temperature (Inside) 24.0 R
Internal _heat transfer Coefficient 1.64 Wi(m?K) Cooldown Simulation
External heat transfer Coefficient .64 Wi[m?K)
Cooldown Time 15.0 min.
Time Step 0.01 5 View Cooldown Plots
Time interval between printing 0.5 min.
Times to plot from start of cooldown (min.) ) 1 2 5 [ 10 [ 15 \
Points to plot temperature. Distance from outer surface (mm) 0 10.76 32.16 | 40.7 | 4.4 |
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Heat Transfer Model for the
refractory — Features

« User can enter the number of layers he
wants in the model.

« Each layer can have different thickness and
different number of nodes.

e The user can choose at what times the
results have to be plotted.

 User can select the nodes where the results
are to plotted.
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. Heat transfer model — assign
refractory properties
L Material Thickness (mm) ] Number of Nodes Home

Material Glaze 07 3
Material Alumina Graphite 40
Material Glaze = 0.7 3

oo [2
5
w

* The table gets populated based on the number of layers
entered by the model.

» User can select which material should be assigned to each
layer by choosing from the drop down menu (which get
automatically populated to show all the materials in the
excel file)
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N Governing Equation and finite difference

:z;g;-:;-:,sg equation for interior nodes

CQFISDrtIum

Gas Burner |.|.|.|.l.|.|.|.|.|.|.|.|.|.|.|.|.|+ Ambient
nnnn Inner surface | Bulk refractory ‘Outer surface ) \nsulaﬂom'E
i'1 | |+1 refractory layer layer refractory layer layer

* Heat conduction equation in cylindrical co—ordinates [1]

oT 140 oT
pCpE rar(kr_j

or
» Using Taylor series [1] expansion, the equation is discretized
as:
. oC aT _k 8T+r82T a—T—oc 18T+82T
P2e ot "l ar o ot |ror or?
= I“*'—r“za LT =T T -2+ T
At r 2Ar Ar?

— T =T+ oAt T.i.( 12 1 j”i:( 12_ 1 j_zTiz
Ar<  2rAr Ar<  2rAr Ar
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o Finite Difference Equations (Side nodes with
NS convection)

e‘"lsortlum

4 Lp| oo FEEEEEEEEEEEEEEEEERD
—> f g g ‘

Inner surface Bulk refractory  Quter surface Insulation

Side Half Cell refractory layer layer refractory layer layer

» Heat balance on side half cell gives:

T T
pCVv aa—t =_ a—|2+hAAT|1

rAr T -T" Ar)(T"
C — 1 =Kk|r S I £ N P ~-T"
P At ( 2)( Ar }L " (Torion =)

= _I_in+1=_|_in+20cAt(r+ArJ T"-T" N 2Athr (Tambiem—Ti”)
rAr 2 Ar pCrAr
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b Finite Difference Equations (Interface
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owoms_{e RISl
DO e —

Inner surface

Bulk refractory Outer surface

-1 i+ refractory layer —layer refractory layer I\gjslatlon
oT 190 oT
p —_——— kr R
ot rorl  or
Tin+l _Tin 1 5T
:> pCp A‘t = Arr |: |+1/2k2 ||+1/2 | 12 la—r|i1/2:|

TH-T" 1 Ar), T -T" Ar), T"-T"
|:> C i io—_ - (r j i+1 i _(r__jk i i—1
=™ At Arr, { 2 ) A 2)" Ar

e VAN Ar n n Ar N oeen
= T™=T +m{%(”7)(‘ﬁ+l—-ﬁ )‘%(“7)(‘7 _Ti—l)j|
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- Steel Shell Solidification Model
Qasqtl:lsg
« Enthalpy formulation of the transient 1-D heat conduction
equation is solved:
oH 190 aT
P =—=| kr -
ot rorl or
» Top row temperatures:
Ti :Tpour
« Top row enthalpies [2]:
H =C_*T L, *int —Tpour
i p pour + ¢ 1N
solidus
where L; is the latent heat of fusion.
University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Varun Kumar Singh 16




Steel Shell Solidification Model
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» Enthalpy of interior nodes:

HirH—] Hn kAt -l_H_I(LZ-F 1 ]+_I_IE1( 12_ 1 ]_ 22-|-in
p Ar=  2rAr Ar=  2rAr ) Ar

+ Enthalpy of side nodes with convection:

Hin+1 = Hin +%[Tsteel _Ti”:|+2_kAt(r +£j m
pAr prar 2 Ar

» After the enthalpy has been calculated the temperatures are then calculated

using [2] :
T, =min {i, max {H,Tw H
CP CP
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o\ Validation of Steady State Aspect of the
R -
! ca‘;ct":‘SQ M 0] d el

e‘"lsortlum

« Compared the results of the simulation when it reaches steady state with
analytical Solution.

* Governing equation for Analytical solution [1]:
10 aT
__(k =0 T, lﬁ r

ror or "
z
« Heat flux through the nozzle is calculated using:Mame: Ts

\

q — Tflame _Tanbient ri Refractory, Kk r hambient’ T2
1 In(r, /1;) 1
+ + T,r _—
hﬂameri k hambi ent rO ambient
« Finally, the temperatures in the nozzle are : r=r,—t
q

T =Thae =

hflameri T= T E ( j
T Tarﬂment q ri

mbiemro
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S Simulation conditions for validation of steady state
Ql‘
{a. sus aspect of the model
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Label Symbol Value Units
Outer Radius of Refractory r, 67.5 mm
Bulk Refractory Wall Thickness t 295 mm
Initial Nozzle Temperature . o
Tintital 27 c
Ambient Temperature o
Tambient 27 c
Flame Temperature Tiame 1460 °C
Internal Convection heat transfer,
Coefficient (Forced) hfame 50 W/(m2K)

External Convection heat 5
transfer Coefficient (Free) Pambiont 73 Wi(m?K)
Thermal Conductivity

K 18.21 W/m-K
Specific Heat C, 804* J/kg-K
Density P 2347 kg/m?3
Stefan Bolt 's Constant
efan Boltzman's Constan o 5.67E-8
Emmissivity € 0.96
* Parameters required by transient simulation method
University of Illinois at Urbana-Champaign . Metals Processing Simulation Lab . Varun Kumar Singh . 19

Validation — Steady state aspect of the
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* The results of the simulation are in good agreement with that of the analytical

solution
Single Layer, No radiation Single Layer, with radiation
Temperature in the nozzle vs radius - Analytical Solution Temperature in the nozzie vs radius + Analgtical Solution
1170.0 { T70.0 4 T
« Transient Solution s600] T ::a“!:nsa:;:-“s::u_hnn

2 11650 | at time (min. )= 208/ | & 185
e ?50 01
=
E 11800 E 740.0 4
] £ 00 |

1155.0
- ® 1200 | +

1150.0 SR s 710.0 |

3200 3700 4200 4700 5200 S7.00 6200 67.00 7200 3200 3700 4200 4700 5200 STO0 6200 6700 TF200
Radius {mm) Radius {mm)
Four Layers, No radiation Four Layers, with radiation |
Temperature in the nozzle vs radius « Analytical Solution Temperature in the nozzie vs radius

11450 - Transient Solution at 7800 4

1140.0 time (min.) = 276 7700 154 « Analytical Solution
& 11350 e 1 & 0o
e 100 3 7500 4 - Transient Solution at time
5 11250 ERLLE {min.} = 276
E 11200 § 7200 . -
& 11150 & 7200 4
E 11100 E 700 ¥
= 11050 = 700.0 4 5

1100.0 = 6900 ¢ ] ‘] -

1095.0 6B0.0 1

38.00 4B.00 58.00 §8.00 78.00 88,00 38.00 48.00 58.00 6800 78.00 88.00
Radius (mm} Radlus (mm}
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.. Validation of transient aspect of the model

+ Compare the results of the simulation with that of the lumped thermal heat
capacity model.

+ System undergoing a transient thermal response to a heat transfer process
has a nearly uniform temperature and small differences of temperature within
the system can be ignored.

* The model is valid only if the Biot number (hL/k) < 0.1

* The governing equation is [1]
dar
pVCp E = —hAa- _Te)
+ To solve this equation, one initial condition is required:
t=0: T=T,
Solving the equation, the temperature at any time,t can be calculated from:

T—Te __—(hwpve)t

—=e
To _Te

where T, is the initial surface temperature, T, is the ambient temperature.
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L Simulation Parameters — Validation of
s transient aspect of the model
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Label Symbol Value Units
Outer Radius of Refractory Iy 67.5 mm
29.5 mm
Bulk Refractory Wall Thickness t
Initial Nozzle Temperature o
Tintial 1100 c
Ambient Temperature N
Tambient 27 C
External Convection heat transfer )
Coefficient (Free) Plambient 7.3 Wim?K)
Thermal Conductivit
Y K 1000 Wim-K
Specific Heat C, 804 Jlkg-K
Density p 2347 kg/m3
Stefan Boltzman's Constant
o 5.67E-8
Emmissivity € 0.96
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Comparison of Results of lumped model and
transient simulation

onsortium

* The results of the simulation are in good agreement with that of the
lumped thermal heat capacity model

Comparsion of results of lumped model with transient simulation at different time
instants
11100
—&— Lumped Model (2 seconds)
11000 e = g > * g g g » ey
—— Simulation (2 secands)

1090.0
—_ =8~ Lumped Madel {100
T 10800
[ seconds)
g
E 1070.0 == Simulation {100 seconds)
:
& 10600 —&—Lumped Model (220

seconds)

10500 ~=Simulation (220 seconds)

10400 - - - - - - - - - - - - - - - -

10300 t t t } t } {

360 410 460 510 56.0 61.0 66.0 710
Radius {(mm)
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Output page of the tool

1000.0

Temperaturein the nozzle during preheat

900.0 %

800.0

700.0

600.0

so0.0

—e—Preheat Time =1min., Total Time = 1 min.

4000 |

—m—Prehest Time =3min. , Total Time =3 min

Temperature {degree C)

300.0

— - - —4—Preheat Time =10min. , Total Time = 10 min

[
2000

—<—Preheat Time =30min. , Total Time = 30 min

—#—Preheat Time =120min. , Total Time = 120 min.

3
1000 %

0.0

a1e a6 s16 s6.6 616 65.6 716 76.6

Radius (mm)

1000.0

Temperaturein the inner and outer surface of the nozzle during preheat

800.0

8000 -

7000 -

6000 -

5000 -

4000

300.0

Temperature (degree C)

2000

1000

090

—+—Inner Surface

——Outer Surface

Plot Area h

00

200 400 60.0 80.0 100.0 120.0 140.0

Time (min.)
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Comparison with measurements (inside
heat transfer coefficient = 72 W/m?2-K)

Comparison of results from numerical simulationand measurements

—#—Measured Temp. 32.16 mm from nozzle outside

—l-Numerical Simulation Temp. - 32.16 mm from outside

~4— Measured Temp. 10.76 mm from nozzle outside

Temperature (degree C)

—=—Numerical Simulation Temp. - 10.76 mm from outside

0 20 40 60 20 100 120
Time [min.)
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g& Comparison with measurements (inside heat
Utus=  transfer coefficient = 18 W/m2-K, emissivity = 0.5)

onsortium

700

Comparison of results from numerical simulation and measurements

600

—4+—Measured Temp. 32.16 mm from nozzle outside

~——Numerical Simulation Temp. - 32.16 mm from outside

—&—Measured Temp. 10.76 mm from nozzle outside

Temperature ([degree C)

== Numerical Simulation Temp. - 10.76 mm from outside

0 0 40 60 B0 100 120

Time (min.)
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9] .
e Parametric Study

Parameters Highest Temperature Difference in temp.
between inner and outer
surface
Forced Convection = 72 920 °C 90 °C
W/m2-K, emissivity = 0.5
Forced Convection = 18 585 °C 30 °C
W/m2-K, emissivity = 0.5
Thermal Conductivity is 954 °C 150 °C
halved
Emissivity increased to 850 °C 100 °C
0.9
Specific Heat is doubled 954 °C 100 °C
University of Illinois at Urbana-Champaign . Metals Processing Simulation Lab . Varun Kumar Singh . 27
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» The temperature in the inner surface of the nozzle reached
900 °C after a preheat time of 2 hours. If the inside heat
transfer coefficient is reduced to 18 W/m?2-K the temperature
in the inner surface of the nozzle is 585 °C. Results from
numerical simulation match those of experiments for this
case.

* The tool can be used to predict the temperatures in the
nozzle during different stages of preheat, cool down and
casting.

» The tool can be used to calculate the flame temperature and
heat transfer coefficients for different fuels and varying
composition.

* Air entrainment should be decreased, because excess air
reduces the flame temperature.
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